

## Phase formation in rapid solidified Ag-Y alloys

S. Niyomsoan, <sup>1,2,a)</sup> P. Gargarella, <sup>2,3,a)</sup> M. Stoica, <sup>2</sup> M. S. Khoshkoo, <sup>2</sup> U. Kühn, <sup>2</sup> and J. Eckert<sup>2,3</sup>

Faculty of Gems, Burapha University, Chanthaburi Campus, Chanthaburi 22170, Thailand <sup>2</sup>IFW Dresden, Institut für Komplexe Materialien, Helmholtzstraße 20, D-01069 Dresden, Germany <sup>3</sup>Institut für Werkstoffwissenschaft, Technische Universität Dresden, D-01062 Dresden, Germany

(Received 4 November 2012; accepted 22 February 2013; published online 13 March 2013)

The phase formation in a rapidly solidified Ag-Y system was evaluated by means of two predictive amorphization criteria: the thermodynamic  $\gamma^*$  parameter and the new  $\lambda + \Delta h^{1/2}$  criterion. The former considers only the thermodynamic contribution, while the latter combines the effect of an atomic size mismatch between elements and their electronic interaction. The results showed a marginal glass-forming ability (GFA) with the best composition region for glass formation located near the Y-rich eutectic region. The melt-spun ribbon contained an amorphous matrix with a distribution of Y solid solution nanocrystals. Two new metastable phases found in the study were identified. One with an orthorhombic structure was precipitated during crystallization of the highest GFA alloy. The other having a hexagonal structure was formed under rapid solidification of the near-eutectic alloy lying between the  $Ag_{51}Y_{14}$  and  $Ag_2Y$  phases. The results also showed no improvement in the predictability of the  $\gamma^*$  and  $\lambda + \Delta h^{1/2}$  amorphization criteria when considering the metastable phases formed during crystallization. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794806]