A New Heat Treatment of Opaque Sapphires from Basaltic Deposit in Chanthaburi, Eastern Thailand

Tasnara SRIPOONJAN¹, Visut PISUTHA-ARNOND²,³, Wilawan ATICHAT⁴, Bhuwadol WANTHANACHAISAENG⁵, Chakkaphan SUTTHIRAT⁶,⁷

¹Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
²Faculty of Gems, Burapha University Chanthaburi Campus, Chanthaburi, 22170, Thailand
³The Gem and Jewelry Institute of Thailand (Public Organization), Bangkok, 10500, Thailand
⁴Corresponding author: c.sutthirat@gmail.com

Abstract

Basaltic corundums both ruby and sapphire are very popular in the world market because of their beautiful colors and some specific phenomena. Due to high gem-quality corundum rarely occurred in these basaltic-type deposits, heat treatments have been applied for centuries and continuously developed until the present days. Color and clarity can be modified based on natural properties of each stone, particularly micro inclusions and trace elements in the stones. Combination and reaction between Mg, Fe and Ti structure of the stone were proven as the main cause of color changing between blue, yellow and colorless after high temperature heating of sapphire (Fig. 1); moreover, heat treatment with additive Be substances has been introduced into the Mg-Fe-Ti reaction for yellow and brown modification. Recently, the Be-assisting heat treatment has also been developed to lighten dark blue shade and to improve transparency, particularly for basaltic sapphires as well as those from Chanthaburi deposit in Eastern Thailand. The present study is carrying out to understand the process of such techniques. Sub-micrometer inclusions, significantly characterized by Fe-Ti silks causing low transparency and dark brown appearances, appear to be the most crucial factor which an important role of Be may dissolve these inclusion and consequently yield higher transparency and yellow and blue of the treated stone (Fig. 2).

Acknowledgements

This research project has been supported by the Gem and Jewelry Institute of Thailand (GIT). The authors would like to thank all staff members of Geology Department, Chulalongkorn University and GIT-Gem Testing Laboratory for their support during the project.

References


Figure 1. Micro inclusion of Fe-Ti silks in unheated sample (left) and after heat-treated at 1650°C with ambient air

Figure 2. The opaque stones from basaltic deposits in Chanthaburi, Thailand (left) Influence of Be may dissolve the Fe-Ti silks and consequently yield higher transparency and yellow and blue color of the treated stone (right)

Corresponding Author
Full name: Chakkaphan Sutthirat
Affiliation: Department of Geology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand,
Phone: +66 2 2185442, Fax: +66 22185464, Email: c.sutthirat@gmail.com; chakkaphan.s@chula.ac.th